Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells

نویسندگان

  • Su-Jin Heo
  • Stephen D. Thorpe
  • Tristan P. Driscoll
  • Randall L. Duncan
  • David A. Lee
  • Robert L. Mauck
چکیده

Mechanical cues direct the lineage commitment of mesenchymal stem cells (MSCs). In this study, we identified the operative molecular mechanisms through which dynamic tensile loading (DL) regulates changes in chromatin organization and nuclear mechanics in MSCs. Our data show that, in the absence of exogenous differentiation factors, short term DL elicits a rapid increase in chromatin condensation, mediated by acto-myosin based cellular contractility and the activity of the histone-lysine N-methyltransferase EZH2. The resulting change in chromatin condensation stiffened the MSC nucleus, making it less deformable when stretch was applied to the cell. We also identified stretch induced ATP release and purinergic calcium signaling as a central mediator of this chromatin condensation process. Further, we showed that DL, through differential stabilization of the condensed chromatin state, established a 'mechanical memory' in these cells. That is, increasing strain levels and number of loading events led to a greater degree of chromatin condensation that persisted for longer periods of time after the cessation of loading. These data indicate that, with mechanical perturbation, MSCs develop a mechanical memory encoded in structural changes in the nucleus which may sensitize them to future mechanical loading events and define the trajectory and persistence of their lineage specification.

منابع مشابه

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity

Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit...

متن کامل

Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells

Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...

متن کامل

Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015